Cyanobacterial Alkanes Modulate Photosynthetic Cyclic Electron Flow to Assist Growth under Cold Stress

نویسندگان

  • Bertram M. Berla
  • Rajib Saha
  • Costas D. Maranas
  • Himadri B. Pakrasi
چکیده

All cyanobacterial membranes contain diesel-range C15-C19 hydrocarbons at concentrations similar to chlorophyll. Recently, two universal but mutually exclusive hydrocarbon production pathways in cyanobacteria were discovered. We engineered a mutant of Synechocystis sp. PCC 6803 that produces no alkanes, which grew poorly at low temperatures. We analyzed this defect by assessing the redox kinetics of PSI. The mutant exhibited enhanced cyclic electron flow (CEF), especially at low temperature. CEF raises the ATP:NADPH ratio from photosynthesis and balances reductant requirements of biosynthesis with maintaining the redox poise of the electron transport chain. We conducted in silico flux balance analysis and showed that growth rate reaches a distinct maximum for an intermediate value of CEF equivalent to recycling 1 electron in 4 from PSI to the plastoquinone pool. Based on this analysis, we conclude that the lack of membrane alkanes causes higher CEF, perhaps for maintenance of redox poise. In turn, increased CEF reduces growth by forcing the cell to use less energy-efficient pathways, lowering the quantum efficiency of photosynthesis. This study highlights the unique and universal role of medium-chain hydrocarbons in cyanobacterial thylakoid membranes: they regulate redox balance and reductant partitioning in these oxygenic photosynthetic cells under stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications.

Cold-induced inhibition of CO(2) assimilation in maize (Zea mays L.) is associated with a persistent depression of the photochemical efficiency of PSII. However, very limited information is available on PSI photochemistry and PSI-dependent electron flow in cold-stressed maize. The extent of the absorbance change (ΔA(820)) used for in vivo quantitative estimation of photooxidizable P700(+) indic...

متن کامل

The Gene sml0013 of Synechocystis Species Strain PCC 6803 Encodes for a Novel Subunit of the NAD(P)H Oxidoreductase or Complex I That Is Ubiquitously Distributed among Cyanobacteria1[W]

The NAD(P)H oxidoreductase or complex I (NDH1) complex participates in many processes such as respiration, cyclic electron flow, and inorganic carbon concentration in the cyanobacterial cell. Despite immense progress in our understanding of the structure-function relation of the cyanobacterial NDH1 complex, the subunits catalyzing NAD(P)H docking and oxidation are still missing. The gene sml001...

متن کامل

The gene sml0013 of Synechocystis species strain PCC 6803 encodes for a novel subunit of the NAD(P)H oxidoreductase or complex I that is ubiquitously distributed among Cyanobacteria.

The NAD(P)H oxidoreductase or complex I (NDH1) complex participates in many processes such as respiration, cyclic electron flow, and inorganic carbon concentration in the cyanobacterial cell. Despite immense progress in our understanding of the structure-function relation of the cyanobacterial NDH1 complex, the subunits catalyzing NAD(P)H docking and oxidation are still missing. The gene sml001...

متن کامل

Cyanobacterial Phytochrome2 Regulates the Heterotrophic Metabolism and Has a Function in the Heat and High-Light Stress Response1[C][W]

Cyanobacteria combine the photosynthetic and respiratory electron transport in one membrane system, the thylakoid membrane. This feature requires an elaborate regulation mechanism to maintain a certain redox status of the electron transport chain, hence allowing proper photosynthetic and respiratory energy metabolism. In this context, metabolic adaptations, as seen in the light-todark and dark-...

متن کامل

G6PDH activity highlights the operation of the cyclic electron flow around PSI in Physcomitrella patens during salt stress

Photosynthetic performances and glucose-6-phosphate dehydrogenase (G6PDH) activity in Physcomitrella patens changed greatly during salt stress and recovery. In P. patens, the cyclic electron flow around photosystem (PS) I was much more tolerant to high salt stress than PSII. After high salt stress, the PSII activity recovered much more slowly than that of PSI, which was rapidly restored to pret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015